

PROSPETTIVE APPLICATIVE DELLA NORMATIVA UNIONALE SUI CONTROLLI UFFICIALI IN SICUREZZA ALIMENTARE E SANITÀ PUBBLICA VETERINARIA: RISCHI EMERGENTI, CONTROLLI UFFICIALI E MTA

Approcci epidemiologici alla gestione dei focolai di malattie a trasmissione alimentare. Il Ruolo dell'Osservatorio Epidemiologico Regionale in caso di MTA (parte 2)

Priverno, 18/10/19

Roberto Condoleo – IZSLT Osservatorio Epidemiologico

AGENDA

- Tecniche di laboratorio applicate in microbiologia alimentare
- Tecniche di caratterizzazione dei microrganismi
- Caso studio: Sospetto focolaio di listeriosi

Prove indirette

Si basano su tecniche che permettono di evidenziare la presenza del microrganismo rilevando una parte di esso (es. antigene o materiale genetico)

Tecniche

ELFA - Enzyme Linked Fluorescent Assay

ELISA - Enzyme-linked immunosorbent assay

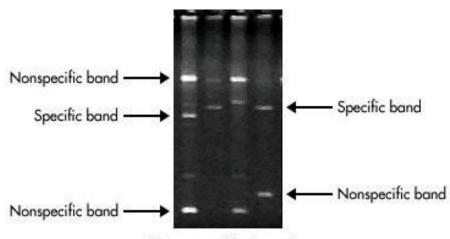
PCR - Polymerase Chain Reaction

Target

Antigeni del microrganismo

Materiale genetico

Tecniche


ELFA - Enzyme Linked Fluorescent Assay

ELISA - Enzyme-linked immunosorbent assay

PCR - Polymerase Chain Reaction

Nonspecific bands

Prove dirette

Si basano su tecniche che permettono di avere evidenza della presenza del microrganismo vitale nella matrice

Tecniche

Isolamento colturale

Prova biologica

Principio

Evidenziare lo sviluppo di un microrganismo in ambienti di crescita a lui favorevoli

Rilevazione effetti dopo inoculo in animali

Tecniche

Isolamento colturale

Prove indirette

ELFA - Enzyme Linked Fluorescent Assay

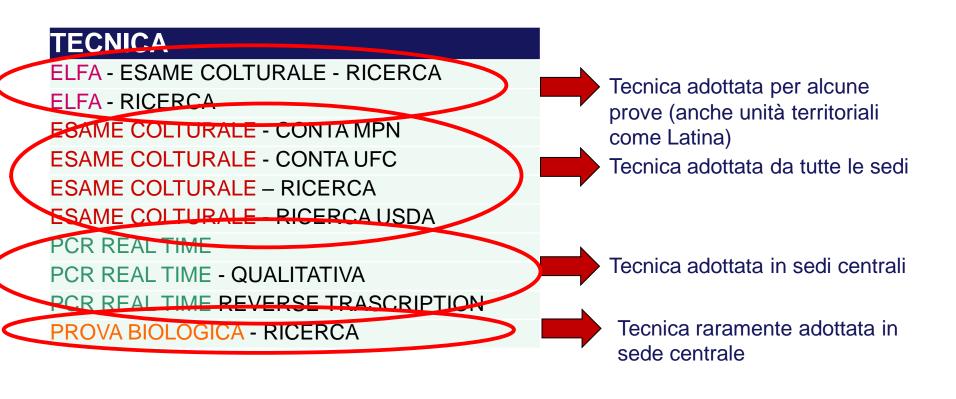
ELISA - Enzyme-linked immunosorbent assay

Solitamente utilizzate come prove di screening

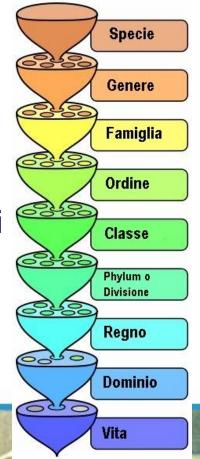
PCR - Polymerase Chain Reaction

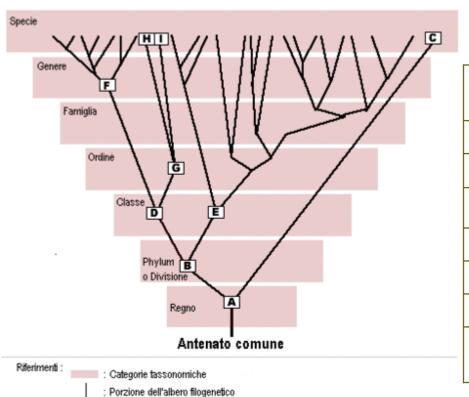
Prove dirette

Isolamento colturale


Solitamente utilizzate come conferma

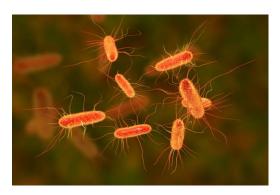
Prova biologica

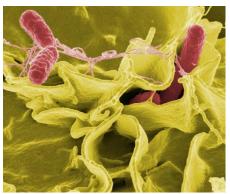

TECNICHE UTILIZZATE DA IZSLT

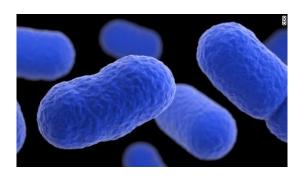


La tassonomia (dal greco: τάξις, tàxis, ordinamento e νόμος, nòmos, norma o regola; talora tassinomia) è, nel suo significato più generale, la disciplina della classificazione.

Abitualmente, si impiega il termine per designare la tassonomia biologica, ossia i criteri con cui si ordinano gli organismi in un sistema di classificazione composto da una gerarchia di taxa annidati.




A B C ... : Alcuni nodi dell'albero


Categoria (taxon)	Esempio					
DOMINIO	Bacteria					
PHYLUM	Proteobacteria					
CLASSE	γ-Proteobacteria					
ORDINE	Enterobacteri <u>ales</u>					
FAMIGLIA	Enterobacteri <u>aceae</u>					
GENERE	Shigella					
SPECIE	S. dysenteriae					

Taxa				
Regno	Bacteria	Bacteria	Bacteria	Animalia
Phylum	Proteobacteria	Proteobacteria	Proteobacteria	Chordata
Classe	Gamma proteobacteria	Gamma proteobacteria	Bacilli	Mammalia
Ordine	Enterobactericales	Enterobactericales	Bacillales	Primates
Famiglia	Enterobacteriaceae	Enterobacteriaceae	Listeriaceae	Hominidae
Genere	Escherichia	Salmonella	Listeria	Homo
Specie	coli	enterica	monocytogenes	sapiens
Subspecie	-	enterica		

Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri Tecniche di laboratorio applicate in microbiologia alimentare

IN QUALE SITUAZIONI DEVO DISCRIMINARE TRA MICRORGANISMI APPARTENENTI ALLA STESSA SPECIE?

Correlazione isolato umano - alimento

Prodotto esitato al consumo

Stabilimento produzione

Le tecniche prima citate si fermano generalmente a livello di specie...

Noi vogliamo sapere se due o più microrganismi derivano dallo stesso ceppo*

Applico una tecnica con potere discriminante...

- BIOVAR: variante biochimica o fisiologica
- MORFOVAR: variante morfologica, morfotipo
- SEROVAR: variante antigenica (sierovariante, sierotipo)
- GENVAR: variante genetica

SIEROLOGICA

Salmonella

Antigene somatico O

Antigene flagellari H

Antigene capsulari Vi (K)

Schema di Kauffmann-White

(es. Napoli, Tiphi, Agona, Enterididis...)

L. monocytogenes

1/2a

1/2b

1/2c

3a

3b

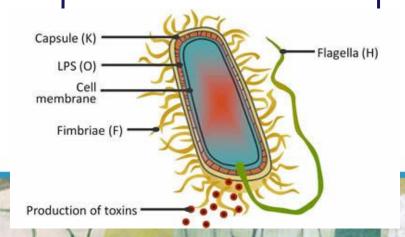
4b

4d

STEC

Antigene somatico O

Antigene flagellari H



E. Coli 0157:H7

E. Coli O26

E. Coli 0111

E. Coli 0103

SIEROLOGICA

PRO

Tecnica «collaudata»

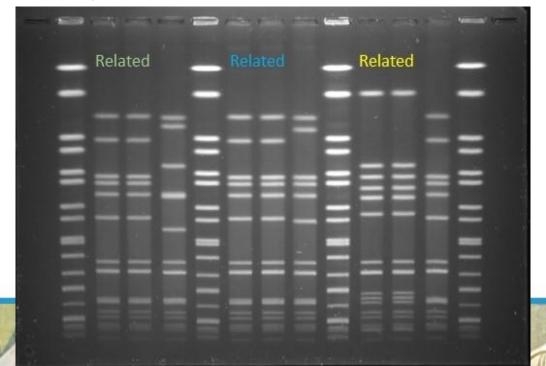
In alcuni casi e per alcuni microrganismi può essere risolutiva

CONTRO

Basso potere discriminante

Costi dei reagenti

Time consuming


Tecnica «manuale»

ELETTROFORESI IN CAMPO PULSATO (PFGE)FASI

- Digestione del DNA genomico con uno o più enzimi di restrizione
- Separazione dei frammenti di restrizione ottenuti mediante elettroforesi a inversione di campo
- Risoluzione dei frammenti su gel di agarosio
- Profilo elettroforetico del singolo ceppi definito «pulsovar»

ELETTROFORESI IN CAMPO PULSATO (PFGE) PRO CONTRO

Buon potere discriminante

Può essere applicata a diversi batteri

Necessità di protocolli standardizzati

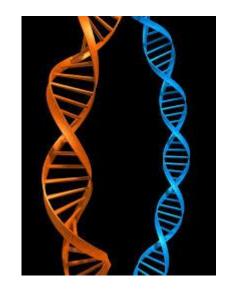
Time-consuming (piuttosto macchinosa)

Costosa

Scarsa riproducibilità

Whole Genome Sequencing (WGS)*

(Sequenziamento intero genoma)


Genericamente, è il processo che porta a determinare in un unico momento la sequenza di DNA che costituisce il genoma di un organismo

Vantaggi

Enorme quantità di informazioni provenienti da uno specifico microrganismo

Svantaggi

Necessità di protocolli standardizzati Grandi quantità di dati da conservare ed elaborare Database necessari per effettuare comparazioni

*Conosciuta anche come full genome sequencing, complete genome sequencing or entire genome sequencing, Next Generation Sequencing

Esempi di applicazione della Whole Genome Sequencing (WGS)

Multilocus Sequence Typing (MLST)

Analizzo la variazione allelica di un numero variabile di housekeeping genes (6-7 di solito) di ogni isolato

Quindi attribuisco, sulla base di uno schema, un

- Sequence Type
- Clonal complex
- Lineage

Institut Pasteur scheme

\neg	_									
		-17	h-13		dP	-1	2 -15	25.52		T :
ST	L	abcZ	bglA	cat	dapE	dat	ldh	lhkA	CC	Lineage
-		3	1	1	1	3	1	3	CC1	I
2		1	1	11	11	2	1	5	CC2	I
3		4	4	4	3	2	1	5	CC3	I
ł		1	2	12	3	2	5	3	CC4	I
5		2	1	11	3	3	1	7	CC5	I
5		3	9	9	3	3	1	5	CC6	I
7		5	8	5	7	6	2	1	CC7	II
3		5	6	2	9	5	3	1	CC8	II
)		6	5	6	4	1	4	1	CC9	II
LO		3	1	20	1	3	1	3	CC1	I
1		7	6	10	6	1	2	1	CC11	II
.2		5	8	5	7	6	22	1	CC7	II
L3		7	6	17	6	10	8	1	ST13	II
.4		8	6	13	6	5	2	1	CC14	II
L5		8	13	13	6	5	2	1	CC14	II
16		5	6	2	7	5	2	1	CC8	II
.7		14	6	2	7	5	2	1	CC8	II
18		7	6	15	18	12	6	1	CC18	II
9		7	6	19	6	1	24	1	CC19	II
20		17	13	3	6	5	7	1	CC20	II
1		7	7	3	10	5	6	1	CC21	II
22		7	7	3	10	5	13	1	CC21	II

Numero possibili alleli

271 243 257 328 219 484 235

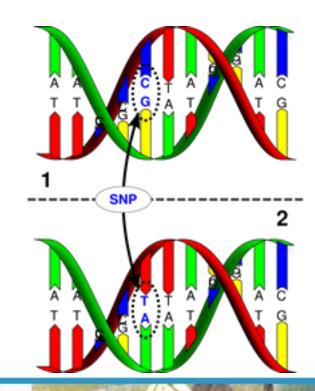
TABLE 1 | Characteristics of 80 *L. monocytogenes* strains isolated from retail ready-to-eat food in this study.

		•			-	-							
Strain/isolate	Strain orgin Sample city Year Serovar ^a Antibiotic susceptibility		Antibiotic susceptibility ^a	ST	hly	inIB	inIA	inIC	inIJ	llsX	EC		
859-1LM	Cold vegetable dish in sauce	Hefei	2012	1/2a-3a	AMP-CIP-DA	ST-8	+	+	+	+	+	_	_
859-2LM	Cold vegetable dish in sauce	Hefei	2012	1/2b-3b-7	CIP-DA-E-K-RD-S-TE	ST-87	+	+	+	+	+	_	_
859-3LM	Cold vegetable dish in sauce	Hefei	2012	1/2a-3a	DA-RD	ST-8	+	+	+	+	+	_	_
859-4LM	Cold vegetable dish in sauce	Hefei	2012	1/2a-3a	DA	ST-8	+	+	+	+	+	_	_
860-1LM	Cold noodles dishes in sauce	Hefei	2012	1/2b-3b-7	AMP-CIP-DA	ST-87	+	+	+	+	+	_	_
860-2LM	Cold noodles dishes in sauce	Hefei	2012	1/2a-3a	AMP-CIP-DA	ST-8	+	+	+	+	+	_	_
860-3LM	Cold noodles dishes in sauce	Hefei	2012	1/2b-3b-7	CIP-DA	ST-5	+	+	+	+	+	_	_
860-4LM	Cold noodles dishes in sauce	Hefei	2012	1/2a-3a	DA	ST-8	+	+	+	+	+	_	_
959-1LM	Cold vegetable dish in sauce	Wuhan	2012	1/2b-3b-7	DA	ST-87	+	+	+	+	+	_	_
959-2LM	Cold vegetable dish in sauce	Wuhan	2012	1/2a-3a	AMP-KF-C-DA-E-CN- K-RD-S-TE-VA	ST-8	+	+	+	+	+	-	-
959-3LM	Cold vegetable dish in sauce	Wuhan	2012	1/2a-3a	DA	ST-8	+	+	+	+	+	_	_
959-4LM	Cold vegetable dish in sauce	Wuhan	2012	1/2a-3a	DA	ST-8	+	+	+	+	+	_	_
1009-1LM	Cold vegetable dish in sauce	Chengdu	2012	1/2b-3b-7	DA	ST-224	+	+	+	+	+	+	_
1009-2LM	Cold vegetable dish in sauce	Chengdu	2012	1/2b-3b-7	DA	ST-224	+	+	+	+	+	+	_
1009-3LM	Cold vegetable dish in sauce	Chengdu	2012	1/2b-3b-7	Е	ST-224	+	+	+	+	+	+	-

Multilocus Sequence Typing (MLST)

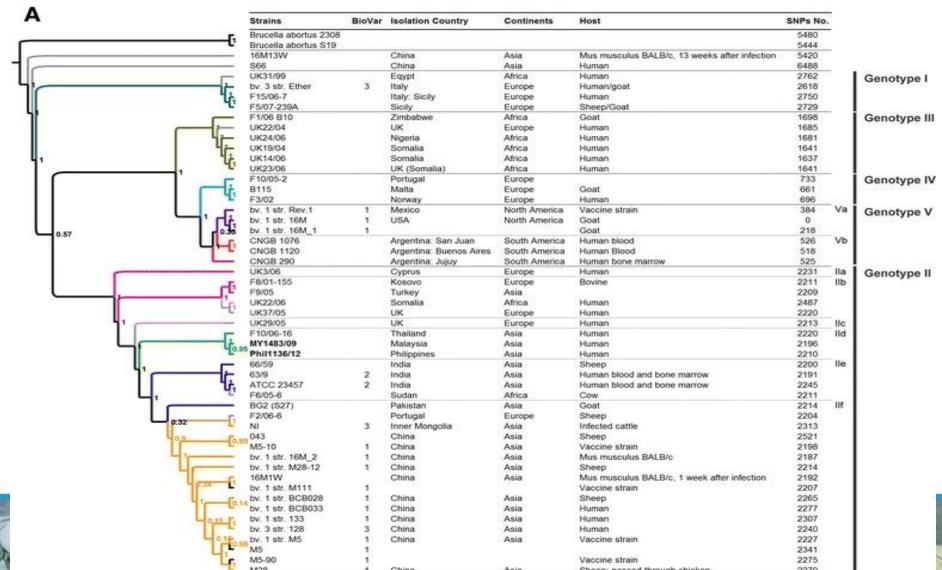
TABLE 2 | Allelic profile (STs) of RTE L. monocytogenes isolates for MLST.

			•	,			, ,		
STs				Profile				No. of	Serovar
	abcZ	bglA	cat	dapE	dat	ldh	lhkA	isolates (%)	
8	5	6	2	9	5	3	1	24 (30)	1/2a-3a
1	3	1	1	1	3	1	3	16 (20)	4b-4d-4e
87	12	1	4	14	3	39	4	7 (8.75)	1/2b-3b-7
9	6	5	6	4	1	4	1	5 (6.25)	1/2c-3c
807	106	1	1	1	3	1	3	5 (6.25)	4b-4d-4e
7	5	8	5	7	6	2	1	4 (5)	1/2a-3a
155	7	10	16	7	5	2	1	4 (5)	1/2a-3a
224	11	3	12	38	3	94	2	4 (5)	1/2b-3b-7
3	4	4	4	3	2	1	5	3 (3.75)	1/2b-3b-7
804	4	4	4	3	5	1	5	2 (2.5)	1/2b-3b-7
121	7	6	8	8	6	37	1	2 (2.5)	1/2a-3a
806	7	10	16	7	5	1	1	2 (2.5)	1/2a-3a
5	2	1	11	3	3	1	7	1 (1.25)	1/2b-3b-7
805	4	4	4	3	1	1	1	1 (1.25)	1/2b-3b-7



Whole Genome Sequencing (WGS)

Single Nucleotide Polymorphisms (SNPs)

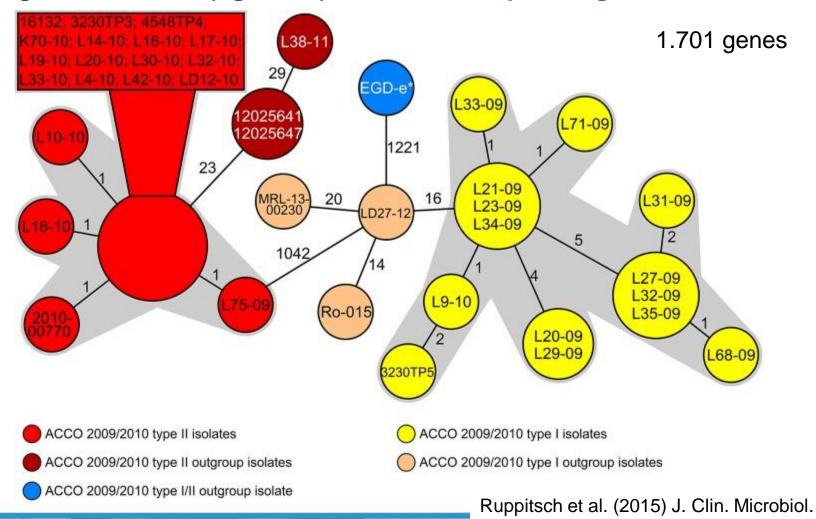

Sostituzione di un singolo nucleotide che avviene in una posizione specifica del genoma

Phylogenetic tree of *B. melitensis* isolates. The phylogenetic tree was reconstructed using 13,728 polymorphic nucleotide sites and rooted with two B. abortus strains. (Andres Garcia-Lor et al., 2011)

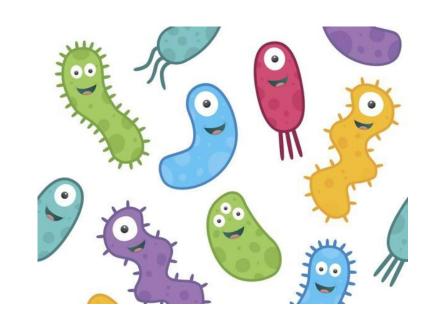
Whole Genome Sequencing (WGS) core genome MLST (cgMLST)

Scelta dei loci da analizzare (es. 1748 *loci* per protocollo L. monocytogenes)

Inclusione solo degli isolati con un certo numero di loci rilevati (es. ≥95% = 1661)



Definisco un cut-off di differenze alleliche -> Es. Due isolati sono differenti differiscono per più di 7 loci


core genome MLST (cgMLST) -> Minimum spanning tree

Each circle represents an allelic profile based on sequence analysis of 1,701 genes. The numbers on the connecting lines illustrate the numbers of target genes with differing alleles. The different groups of strains are distinguished by the colors of the circles. Closely related genotypes (≤10 allele difference) are shaded in gray. The NCBI RefSeg strain is marked with an asterisk.

Grazie de l'attenzione

Your last mistakė is your best teacher

Dr. ROBERTO CONDOLEO

ISTITUTO ZOOPROFILATTICO SPERIMENTALE LAZIO E TOSCANA «M. Aleandri»

- OSSERVATORIO EPIDEMIOLOGICO VETERINARIO -

Via Appia Nuova 1411, Roma; Tel.06/7990360

Roberto.condoleo@izslt.it; www.izslt.it